- acend gmbh

Setup

Setup instructions

This training depends on oc , the OpenShift command-line interface.

You have the choice of either using OpenShift's web terminal or installing oc locally.

If you prefer to not install anything on your computer, follow the instructions on the 1. Web terminal page.
The 2. Local usage chapter explains how to install oc for the respective operating system.

Also have a look at the 3. Other ways to work with OpenShift, which is, however, totally optional.

In case you’ve already installed oc, please make sure you have an up-to-date version.

1/62

- acend gmbh

1. Web terminal

Using OpenShift’'s web terminal might be more convenient for you as it doesn’t require you to install oc
locally on your computer.

If you do change your mind, head right over to 2. Local usage.

Task 1.1: Login on the web console

First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 1.2: Initialize terminal

Make sure to create a dedicated project for the web terminal!

In OpenShift’s web console:

Click on the terminal icon on the upper right

Choose to create a new project

Name your project <username>-terminal where <username> is the username given to you during this training
Click Start

PwnNH

2/62

- acend gmbh

Red Hat
OpenShift

Getting Started

+

Initialize terminal

Project

Project name

Task 1.3: Verification

After the initial setup, you're presented with a web terminal. Tools like oc are already installed and you're
also already logged in.

You can check this by executing the following command:

oc whoami

You're now ready to go!

The terminal project is only meant to be used for the web terminal resources. Always check that you do not
use the terminal namespace for the other labs!

3/62

- acend gmbh

Next steps

If you're interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you're ready to go, head on over to the labs and begin with the training!

4/62

file:///docs/

- acend gmbh
2. Local usage

Please follow the instructions on the 2.1. cl/i installation page to install oc .

If you already have successfully installed oc, please verify that your installed version is current. Then, head
over to 2.2. Console login to log in.

2.1. cli installation

The oc command is the command-line interface to work with one or several OpenShift clusters.
The client is written in Go and you can run the single binary on the following operating systems:

e 2.1.1. Windows
e 2.1.2. macOS
e 2.1.3. Linux

5/62

- acend gmbh

2.2. Console login

Task 2.2.1: Login on the web console

First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 2.2.2: Login on the command line

In order to log in on the command line, copy the login command from the web console.

To do that, open the Web Console and click on your username that you see at the top right, then choose
Copy Login Command.

© © developer «

Copy Login Command

Log out

A new tab or window will open in your browser.

You might need to log in again.

The page now displays a link Display token. Click on it and copy the command under Log in with this
token.

Now paste the copied command on the command line.

Task 2.2.3: Verify login

If you now execute oc version you should see something like this (your output may vary):

Client Version: 4.11.2
Kustomize Version: v4.5.4
Kubernetes Version: v1.24.0+dc5a2fd

First steps with oc

The oc binary has many subcommands. Invoke oc --help (or simply -h) to get a list of all subcommands; oc
<subcommand> --help gives you detailed help about a subcommand.

6/62

- acend gmbh

Next steps

If you're interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you're ready to go, head on over to the labs and begin with the training!

7/62

file:///docs/

- acend gmbh

3. Other ways to work with OpenShift

Other ways to work with OpenShift

If you don’t have access to a running OpenShift development environment (anymore), there are several
options to get one.

e OpenShift Developer Sandbox : 30 days of no-cost access to a shared cluster on OpenShift
e OpenShift Local : A local OpenShift environmennt running on your machine

* OKD single node installation : OKD (OpenShift community edition) single node installation

Next steps

When you're ready to go, head on over to the labs and begin with the training!

8/62

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/products/openshift-local/overview
https://docs.okd.io/latest/installing/installing_sno/install-sno-preparing-to-install-sno.html
file:///docs/

- acend gmbh

Labs

The purpose of these labs is to convey OpenShift basics by providing hands-on tasks for people. OpenShift
will allow you to deploy and deliver your software packaged as containers in an easy, straightforward way.

Goals of these labs:

¢ Help you get started with this modern technology
* Explain the basic concepts to you
e Show you how to deploy your first applications on Kubernetes

Additional Docs
« OpenShift Docs

Additional Tutorials

9/62

https://docs.openshift.com/
https://learn.openshift.com/

- acend gmbh

1. Introduction

In this lab, we will introduce the core concepts of OpenShift.

All explanations and resources used in this lab give only a quick and not detailed overview. As OpenShift is
based on Kubernetes, its concepts also apply to OpenShift which you can find in the official Kubernetes
documentation .

Core concepts

With the open source software OpenShift, you get a platform to build and deploy your application in a
container as well as operate it at the same time. Therefore, OpenShift is also called a Container Platform, or
the term Container-as-a-Service (CaaS) is used.

Depending on the configuration the term Platform-as-a-Service (PaaS) works as well.

Container engine

OpenShift's underlying container engine is CRI-O . Earlier releases used Daocker .

Docker was originally created to help developers test their applications in their continuous integration
environments. Nowadays, system admins also use it. CRI-O doesn’t exist as long as Docker does. It is a
“lightweight container runtime for Kubernetes” and is fully OCl-compliant .

Overview
OpenShift basically consists of control plane and worker nodes.

Worker node 1

Kubernetes Architectur

High Le‘lel- Over\liew Comainm ! ' Container 1

Container 2 Container 1

Container 3 Container 2

Kubernetes master
- Container Runtime
(ﬁl User interface kubelet kube-proxy

—_—
CLl, kubectl Scheduler Worker node 2

Controller-Manager

Container 1 Container 1

Container 2 Container 1
etcd

Container 3 Container 2

Container Runtime

kubelet kube-proxy

acend

10/62

https://kubernetes.io/docs/concepts/
https://cri-o.io/
https://www.docker.com/
https://github.com/opencontainers/runtime-spec

- acend gmbh

Control plane and worker nodes

The control plane components are the AP/ server, the scheduler and the controller manager. The API server
itself represents the management interface. The scheduler and the controller manager decide how
applications should be deployed on the cluster. Additionally, the state and configuration of the cluster itself
are controlled in the control plane components.

Worker nodes are also known as compute nodes, application nodes or minions, and are responsible for
running the container workload (applications). The control plane for the worker nodes is implemented in the
control plane components. The hosts running these components were historically called masters.

Containers and images

The smallest entities in Kubernetes and OpenShift are Pods, which resemble your containerized application.

Using container virtualization, processes on a Linux system can be isolated up to a level where only the
predefined resources are available. Several containers can run on the same system without “seeing” each
other (files, process IDs, network). One container should contain one application (web server, database,
cache, etc.). It should be at least one part of the application, e.g. when running a multi-service middleware.
In a container itself any process can be started that runs natively on your operating system.

Containers are based on images. An image represents the file tree, which includes the binary, shared
libraries and other files which are needed to run your application.

A container image is typically built from a containerfile Or bpockerfile , which is a text file filled with
instructions. The end result is a hierarchically layered binary construct. Depending on the backend, the
implementation uses overlay or copy-on-write (COW) mechanisms to represent the image.

Layer example for a Tomcat application:

1. Base image (CentOS 7)
2. Install Java

3. Install Tomcat

4. Install App

The pre-built images under version control can be saved in an image registry and can then be used by the
container platform.

Namespaces and Projects

Namespaces in Kubernetes represent a logical segregation of unique names for entities (Pods, Services,
Deployments, ConfigMaps, etc.).

In OpenShift, users do not directly create Namespaces, they create Projects. A Project is a Namespace with
additional annotations.

OpenShift's concept of a Project does not coincide with Rancher’s.

Permissions and roles can be bound on a per-project basis. This way, a user can control his own resources
inside a Project.

Some resources are valid cluster-wise and cannot be set and controlled on a namespace basis.

11/62

- acend gmbh

Pods

A Pod is the smallest entity in Kubernetes and OpenShift.

It represents one instance of your running application process. The Pod consists of at least two containers,
one for your application itself and another one as part of the Kubernetes design, to keep the network
namespace. The so-called infrastructure container (or pause container) is therefore automatically added by
Kubernetes.

The application ports from inside the Pod are exposed via Services.

Services

A service represents a static endpoint for your application in the Pod. As a Pod and its IP address typically
are considered dynamic, the IP address of the Service does not change when changing the application
inside the Pod. If you scale up your Pods, you have an automatic internal load balancing towards all Pod IP
addresses.

There are different kinds of Services:

e clusterIP : Default virtual IP address range

® NodePort : Same as clusteriP plus open ports on the nodes

e loadBalancer : An external load balancer is created, only works in cloud environments, e.g. AWS ELB
e ExternalName : A DNS entry is created, also only works in cloud environments

A Service is unique inside a Namespace.

Deployment

Have a look at the official documentation .

Volume

Have a look at the official documentation .

Job

Have a look at the official documentation .

History

There is a official Kubernetes Documentary available on Youtube.

e Kubernetes: The Documentary [PART 1]
o K rnetes: The D mentary [PART 2

Inspired by the open source success of Docker in 2013 and seeing the need for innovation in the area of
large-scale cloud computing, a handful of forward-thinking Google engineers set to work on the container
orchestrator that would come to be known as Kubernetes- this new tool would forever change the way the
internet is built.

These engineers overcome technical challenges, resistance to open source from within, naysayers, and
intense competition from other big players in the industry.

Most engineers know about “The Container Orchestrator Wars’’' but most people would not be able to
12 /62

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-volumes.html
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
https://www.youtube.com/watch?v=BE77h7dmoQU
https://www.youtube.com/watch?v=318elIq37PE

- acend gmbh
explain exactly what happened, and why it was Kubernetes that ultimately came out on top.

There is no topic more relevant to the current open source landscape. This film captures the story directly
from the people who lived it, featuring interviews with prominent engineers from Google, Red Hat, Twitter
and others.

1.1. YAML

YAML Ain’t Markup Language (YAML) is a human-readable data-serialization language. YAML is not a
programming language. It is mostly used for storing configuration information.

Data serialization is the process of converting data objects, or object states present in complex data
structures, into a stream of bytes for storage, transfer, and distribution in a form that can allow recovery of
its original structure.

As you will see a lot of YAML in our Kubernetes basics course, we want to make sure you can read and write
YAML. If you are not yet familiar with YAML, this introduction is waiting for you. Otherwise, feel free to skip it
or come back later if you meet some less familiar YAML stuff.

This introduction is based on the YAML Tutorial from cloudbees.com .
For more information and the full spec have a look at https://yaml.org/

A simple file

Let’s look at a YAML file for an overview:

foo: "foo is not bar"
bar: "bar is not foo"
pi: 3.14159
awesome: true
kubernetes-birth-year: 2015
cloud-native:
- scalable
- dynamic
- cloud
- container
kubernetes:
version: "1.22.0"
deployed: true
applications:
- name: "My App"
location: "public cloud"

The file starts with three dashes. These dashes indicate the start of a new YAML document. YAML supports
multiple documents, and compliant parsers will recognize each set of dashes as the beginning of a new one.

Then we see the construct that makes up most of a typical YAML document: a key-value pair. foo is a key
that points to a string value: foo is not bar

YAML knows four different data types:

e foo & bar are strings.
e pi is a floating-point number

13/62

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://yaml.org/

- acend gmbh
¢ awesome iS a boolean

e kubernetes-birth-year iS an integer

You can enclose strings in single or double-quotes or no quotes at all. YAML recognizes unquoted numerals
as integers or floating point.

The cloud-native item is an array with four elements, each denoted by an opening dash. The elements in
cloud-native are indented with two spaces. Indentation is how YAML denotes nesting. The number of spaces
can vary from file to file, but tabs are not allowed.

Finally, kubernetes is a dictionary that contains a string version , @ boolean deployed and an array applications
where the item of the array contains two strings .

YAML supports nesting of key-values, and mixing types.

Indentation and Whitespace

Whitespace is part of YAML’s formatting. Unless otherwise indicated, newlines indicate the end of a field.
You structure a YAML document with indentation. The indentation level can be one or more spaces. The
specification forbids tabs because tools treat them differently.

Comments

Comments begin with a pound sign. They can appear after a document value or take up an entire line.

This is a full 1ine comment
foo: bar # this is a comment, too

YAML data types

Values in YAML's key-value pairs are scalar. They act like the scalar types in languages like Perl, Javascript,
and Python. It's usually good enough to enclose strings in quotes, leave numbers unquoted, and let the
parser figure it out. But that’s only the tip of the iceberg. YAML is capable of a great deal more.

Key-Value Pairs and Dictionaries

The key-value is YAML's basic building block. Every item in a YAML document is a member of at least one
dictionary. The key is always a string. The value is a scalar so that it can be any datatype. So, as we’ve
already seen, the value can be a string, a number, or another dictionary.

Numeric types

YAML recognizes numeric types. We saw floating point and integers above. YAML supports several other
numeric types. An integer can be decimal, hexadecimal, or octal.

foo: 12345
bar: 0x12d4
plop: 023332

YAML supports both fixed and exponential floating point numbers.

14 /62

- acend gmbh

foo: 1230.15
bar: 12.3015e+05

Finally, we can represent not-a-number (NAN) or infinity.

foo: .inf
bar: -.Inf
plop: .NAN

Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings

YAML strings are Unicode. In most situations, you don’t have to specify them in quotes.

foo: this is a normal string

But if we want escape sequences handled, we need to use double quotes.

foo: "this is not a normal string\n"
bar: this is not a normal string\n

YAML processes the first value as ending with a carriage return and linefeed. Since the second value is not
quoted, YAML treats the \n as two characters.

foo: this is not a normal string
bar: this is not a normal string\n

YAML will not escape strings with single quotes, but the single quotes do avoid having string contents
interpreted as document formatting. String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

bar: >
this is not a normal string it
spans more than
one line
see?

But it's interpreted without the newlines: bar : this is not a normal string it spans more than one line see?

The block (pipe) character has a similar function, but YAML interprets the field exactly as is.

15/62

- acend gmbh

bar: |
this is not a normal string it
spans more than
one line
see?

So, we see the newlines where they are in the document.

bar : this is not a normal string it
spans more than

one line

see?

Nulls

You enter nulls with a tilde or the unquoted null string literal.

foo: ~
bar: null
Booleans

YAML indicates boolean values with the keywords True, On and Yes for true. False is indicated with False,
Off, or No.

foo: True
bar: False
light: On
TV: Off

Arrays

You can specify arrays or lists on a single line.

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

Or, you can put them on multiple lines.

16 /62

- acend gmbh

items:
=

[
HwWN

= 5
names:

- "one"

- Ttwo"

- "three"

- "four"

The multiple line format is useful for lists that contain complex objects instead of scalars.

items:
- things:
thingl: huey
things2: dewey
thing3: louie
- other things:
key: value

An array can contain any valid YAML value. The values in a list do not have to be the same type.

Dictionaries

We covered dictionaries above, but there’'s more to them. Like arrays, you can put dictionaries inline. We
saw this format above.

foo: { thingl: huey, thing2: louie, thing3: dewey }

We’ve seen them span lines before.

foo: bar
bar: foo

And, of course, they can be nested and hold any value.

foo:
bar:
- bar
- rab
- plop

17 /62

- acend gmbh
2. First steps

In this lab, we will interact with the OpenShift cluster for the first time.

Please make sure you completed Setup before you continue with this lab.

Projects

As a first step on the cluster, we are going to create a new Project.

A Project is a logical design used in OpenShift to organize and separate your applications, Deployments,
Pods, Ingresses, Services, etc. on a top-level basis. Authorized users inside a Project are able to manage
those resources. Project names have to be unique in your cluster.

Task 2.2: Create a Project

Create a new Project in the lab environment. The oc help output can help you figure out the right command.

Please choose an identifying name for your Project, e.g. your initials or name as a prefix. We are going to
use <namespace> as a placeholder for your created Project.

Solution

To create a new Project on your cluster use the following command:

oc new-project <namespace>

In order to declare what Project to use, you have several possibilities:

¢ Some prefer to explicitly select the Project for each oc command by adding --namespace <namespace> OF -n
<namespace>

e By using the following command, you can switch into another Project instead of specifying it for each
oc command

oc project <namespace>

Task 2.3: Discover the OpenShift web console

Discover the different menu entries in the two views, the Developer and the Administrator view.

Display all existing Pods in the previously created Project with oc (there shouldn’t yet be any):

18 /62

- acend gmbh

oc get pod --namespace <namespace>

With the command oc get you can display all kinds of resources.

19/62

- acend gmbh
3. Deploying a container image

In this lab, we are going to deploy our first container image and look at the concepts of Pods, Services, and
Deployments.

Task 3.1: Start and stop a single Pod

After we’'ve familiarized ourselves with the platform, we are going to have a look at deploying a pre-built
container image from Quay.io or any other public container registry.

In OpenShift we have used the <project> identifier to select the correct project. Please use the same
identifier in the context <namespace> to do the same for all upcoming labs. Ask your trainer if you want more
information on that.

First, we are going to directly start a new Pod. For this we have to define our Kubernetes Pod resource
definition. Create a new file pod_awesome-app.yaml with the content below.

Alternatively, you can create the Pod definition on the web console. Simply click on the plus sign button
on the upper right (1), make sure you’ve selected the correct Project (2) and paste the content.

Red Hat

OpenShift

‘ Project: All Projects = | 2

Import YAML

Drag and drop YAML or JSON files into the editor, or manually enter files and use | - - - | to separate each definition.

apiVersion: vi
kind: Pod
metadata:

name: awesome-app

spec:

containers:

- image: quay.io/acend/example-web-go:latest
imagePullPolicy: Always
name: awesome-app
resources:

limits:
cpu: 20m
memory: 32Mi
requests:
cpu: 10m
memory: 16Mi

If you used the web console to import the Pod’s YAML definition, don’t execute the following command.

Now we can apply this with:

20/62

- acend gmbh
oc apply -f pod_awesome-app.yaml --namespace <namespace>
The output should be:
pod/awesome-app created

Use oc get pods --namespace <namespace> in order to show the running Pod:
oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
awesome-app 1/1 Running @ Tm24s

Have a look at your awesome-app Pod inside the OpenShift web console.

Now delete the newly created Pod:

oc delete pod awesome-app --namespace <namespace>

Task 3.2: Create a Deployment

In some use cases it can make sense to start a single Pod. But this has its downsides and is not really a
common practice. Let’s look at another concept which is tightly coupled with the Pod: the so-called
Deployment. A Deployment ensures that a Pod is monitored and checks that the number of running Pods
corresponds to the number of requested Pods.

To create a new Deployment we first define our Deployment in a new file deployment_example-web-go.yaml with
the content below.

You could, of course, again import the YAML on the web console as described above.

21/62

- acend gmbh

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app: example-web-go
name: example-web-go
spec:
replicas: 1
selector:
matchLabels:
app: example-web-go
template:
metadata:
labels:
app: example-web-go
spec:
containers:

- image: quay.io/acend/example-web-go:latest
name: example-web-go
resources:

requests:
cpu: 10m
memory: 16Mi
limits:
cpu: 20m
memory: 32Mi

And with this we create our Deployment inside our already created namespace:

If you used the web console to import the Deployment’s YAML definition, don’t execute the following
command.

oc apply -f deployment_example-web-go.yaml --namespace <namespace>

The output should be:

deployment . apps/example-web-go created

We’'re using a simple sample application written in Go, which you can find built as an image on Quay.io or as
source code on GitHub .

OpenShift creates the defined and necessary resources, pulls the container image (in this case from
Quay.io) and deploys the Pod.

Use the command oc get with the -w parameter in order to get the requested resources and afterward
watch for changes.

The oc get -w command will never end unless you terminate it with cTrRL-c.

oc get pods -w --namespace <namespace>

22 /62

https://quay.io/repository/acend/example-web-go/
https://github.com/acend/awesome-apps

- acend gmbh

Instead of using the -w parameter you can also use the watch command which should be available on most
Linux distributions:

watch oc get pods --namespace <namespace>

This process can last for some time depending on your internet connection and if the image is already
available locally.

If you want to create your own container images and use them with OpenShift, you definitely should have a
look at these best practices and apply them. This image creation guide may be for OpenShift, however it
also applies to Kubernetes and other container platforms.

Creating Kubernetes resources

There are two fundamentally different ways to create Kubernetes resources. You've already seen one way:
Writing the resource’s definition in YAML (or JSON) and then applying it on the cluster using oc apply .

The other variant is to use helper commands. These are more straightforward: You don’t have to copy a
YAML definition from somewhere else and then adapt it. However, the result is the same. The helper
commands just simplify the process of creating the YAML definitions.

As an example, let’s look at creating above deployment, this time using a helper command instead. If you
already created the Deployment using above YAML definition, you don’t have to execute this command:

oc create deployment example-web-go --image=quay.io/acend/example-web-go:latest --namespace <namespace>

It's important to know that these helper commands exist. However, in a world where GitOps concepts have
an ever-increasing presence, the idea is not to constantly create these resources with helper commands.
Instead, we save the resources’ YAML definitions in a Git repository and leave the creation and management
of those resources to a tool.

Task 3.3: Viewing the created resources

Display the created Deployment using the following command:

oc get deployments --namespace <namespace>

A Deployment defines the following facts:

« Update strategy: How application updates should be executed and how the Pods are exchanged

e Containers
o Which image should be deployed

o Environment configuration for Pods
o ImagePullPolicy

23/62

https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

- acend gmbh
¢ The number of Pods/Replicas that should be deployed

By using the -o (or --output) parameter we get a lot more information about the deployment itself. You can
choose between YAML and JSON formatting by indicating -o yam1 or -o json . In this training we are going to
use YAML, but please feel free to replace yami with json if you prefer.

oc get deployment example-web-go -o yaml --namespace <namespace>
After the image has been pulled, OpenShift deploys a Pod according to the Deployment:
oc get pods --namespace <namespace>

which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-go-69b658f647-xnm94 1/1 Running @ 39s

The Deployment defines that one replica should be deployed — which is running as we can see in the
output. This Pod is not yet reachable from outside the cluster.

Task 3.4: Verify the Deployment in the OpenShift web
console

Try to display the logs from the example application in the OpenShift web console.

Task 3.5: Build the image yourself

Up until now, we’ve used pre-built images from Quay.io. OpenShift offers the ability to build images on the
cluster itself using different strategies :

« Docker build strategy
¢ Source-to-image build strategy
e Custom build strategy
¢ Pipeline build strategy

We are going to use the Docker build strategy. It expects:

[...] a repository with a Dockerfile and all required artifacts in it to produce a runnable image.

All of these requirements are already fulfilled in the source code repaository on GitHub , so let’s build the

image!

Have a look at OpenShift’s documentation to learn more about the other available build strategies.

First we clean up the already existing Deployment:

24 /62

https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html
https://github.com/acend/awesome-apps/tree/main/go
https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html

- acend gmbh

oc delete deployment example-web-go --namespace <namespace>

We are now ready to create the build and deployment, all in one command:

0oC new-app --name example-web-go --labels app=example-web-go --context-dir go/ --strategy docker https://github.com/ace
nd/awesome-apps.git --namespace <namespace>

Let’'s watch the image’s build process:

oc logs bc/example-web-go --follow --namespace <namespace>

The message Push successful signifies the image’s successful build and push to OpenShift’s internal image.

In the above command you discovered a new resource type bc which is the abbreviation for BuildConfig. A
BuildConfig defines how a container image has to be built.

A Build resource represents the build process itself based upon the BuildConfig’s definition. A build takes
place in a Pod on OpenShift, so instead of referencing the BuildConfig in our oc logs command, we could
have used the build Pod’s log output. However, referencing the BuildConfig has the advantage that it can be
reused each time a build is run. A build Pod changes its name with every build.

Have a look at the new Deployment created by the oc new-app command:

oc get deployment example-web-go -o yaml --namespace <namespace>

It looks the same as before with the only essential exception that it uses the image we just built instead of
the pre-built image from Quay.io:

spec:
containers:
- image: image-registry.openshift-image-registry.svc:5000/<namespace>/awesome-app@sha256:4cd671273a837453464f7264
afe845b299297ebe032f940fd005cfIc40d1e76¢c

25/62

- acend gmbh

4. Exposing a service

In this lab, we are going to make the freshly deployed application from the last lab available online.

Task 4.1: Create a ClusterlIP Service

The command oc apply -f deployment_example-web-go.yaml from the last lab creates a Deployment but no Service.
A OpenShift Service is an abstract way to expose an application running on a set of Pods as a network
service. For some parts of your application (for example, frontends) you may want to expose a Service to an
external IP address which is outside your cluster.

OpenShift serviceTypes allow you to specify what kind of Service you want. The default is clusterIp .
Type Values and their behaviors are:

e ClusterIP : EXposes the Service on a cluster-internal IP. Choosing this value only makes the Service
reachable from within the cluster. This is the default ServiceType.

* NodePort : EXposes the Service on each Node’s IP at a static port (the NodePort). A ClusterlP Service, to
which the NodePort Service routes, is automatically created. You’ll be able to contact the NodePort
Service from outside the cluster, by requesting <NodelP>:<NodePort>.

¢ loadBalancer : Exposes the Service externally using a cloud provider’s load balancer. NodePort and
ClusterlP Services, to which the external load balancer routes, are automatically created.

e ExternalName : Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by
returning a CNAME record with its value. No proxying of any kind is set up.

You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point
for your cluster. Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the Route resource. A Route may be configured to
give Services externally reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress controller is responsible for fulfilling the route, usually with a load balancer,
though it may also configure your edge router or additional frontends to help handle the traffic.

In order to create a Route, we first need to create a Service of type ClusterlP .

To create the Service add a new file svc-web-go.yaml with the following content:

apiVersion: vi
kind: Service
metadata:

labels:
app: example-web-go

name: example-web-go

spec:

ports:

- port: 5000
protocol: TCP
targetPort: 5000

selector:
app: example-web-go

type: ClusterIP

And then apply the file with:

26 /62

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

- acend gmbh

oc apply -f svc-web-go.yaml --namespace <namespace>

There is also am imperative command to create